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Many numerical methods have been developed for solving the linear operator

equation
(I-K)y = f (1)

in the case that (1) represents a Fredholm integral equation of the second

kind. This research concentrated on the equations of this type when I-K is not

an invertible operator. We had two principal objectives. First, we sought to

develop a technique for numerically solving (1) by using a finite rank modifi-

cation to transform the equation into a uniquely solvable one. The usual al-

gorithms and error analysis could then be implemented for the uniquely solvable

problem. Our second objective was to produce a new method for the approximation

of eigenfunctions of the integral operator K in (1).

A theory of finite rank perturbation of Fredholm operators was developed in

Hilbert spaces in 13] and extended to more general Banach spaces in L11 . The

techniques developed here are based on that theory. We have been most successful

in achieving the second objective. To this end we have used the finite rank

perturbations to construct an invertible operator B from the noninvertible opera-

tor A where A is a Fredholm operator, e.g., A 1 I-K in (1). Previous results

related the operator B-1 to N(A). In this we extended our investigation to the

relationship between higher powers of B"1 and null spaces of higher powers of A.

It Is this relationship that allowed us to develop precedures for constructing

a basis for the null space N(A2 ) and for obtaining independent elements in N(A),

N(A2),..,,N(Ar ), where r is a positive integer. This procedure applied specifi-

cally to A = AI-K, where K is an integral operator, allowed us to approximate

the eigenfunctions and generalized eigenfunctions of.K using an approximation

A to the eigenvalue A. These results have been accepted for publication as

they appear in [2] . A copy of the manuscript was forwarded to the U.S. Army

Research Office at the time that it was submitted to the Journal.
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Our efforts in achieving the first objective have been expended in

developing the appropriate computer software. The technique for solving (1)

when I-K is singular has consisted theoretically of constructing a finite rank

operator L so that
(I-K-L)y = f (2)

has a unique solution for all f is some appropriate space. For f in the range

of I-K the solution of (2) is then also a solution of (1) (See [1] and (31 for

details). The main drawback to the construction L is that the dimension of the

null space N(I-K) must be known. If it is not we can try to discover it from

the fact that I-K-L is not invertible unless the rank of L is equal to the

dimension of N(I-K) and the fact that if f is properly chosen the solution of

(2) satisfies certain prescribed conditions (3, Theorem 3.31 . If the dimen-

sion of N(I-K) is known then L can in effect be randomly generated and (2) can

be solved by conventional methods thus producing a solution of (1). This

approach has already proved fruitiful in numerically solving equations involving

singularmatrices (See (4] ). In attempting to develop a numerical procedure

for determining the dimension of N(I-K) we have concentrated our research on re-

fining the process of numerically determining the dimension of N(A) where A is

a singular matrix. Our efforts in this area have not yet produced any signifi-

cant results. The principal investigator is continuing her research in this

area.

Scientific personnel employed on this project

were: Sylvia T. Bozeman, Ph.D., Principal Investigator
Luis Kramarz, Ph.D., Associate Investigator
Joyce Anglin, Graduate Assistant

Joyce Anglin was employed on this project during the period from June 1, 1982

to December 30, 1982. She was awarded the M.S. Degree in Mathematics in August,

1983. Her thesis is entitled "Perturbation Theory and Fredholm Operators".

Since the last progress report the principal investigator has traveled to

Louisville, Kentucky to attend the joint national meetings of several mathematical
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societies including the Anerican Mathematical Society, the National Association

of Mathematicians, and the Mathematical Association of America. The purpose

of this trip was to foster exchange with other researchers working in the same

area. These meetings were held January 25-28, 1984.
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